

DR.Ahmad Al Qawasmi

Fatty acids synthesis

- At low energy state, high ADP level leads for the activation of TCA cycle to generate energy
- FAs are synthesized in the *high energy state*, which causes:
 - Inhibition of TCA cycle, especially isocitrate dehydrogenase enzyme, causing the accumulation of citrate which is transported from the mitochondria into the cytosol by citrate transporter and cleaved into *oxaloacetate* and *acetyl CoA* by *ATP citrate lyase*
 - Acetyl CoA is then used in the synthesis of FAs
- FAs synthesis occurs in the *cytosol* of *liver* and *adipose tissues*, by Fatty acid synthase (FAS)
- FAS is a multi-functional homo-dimeric enzyme
 - Each monomer has 6 enzymatic domains and 1 binding domain (ACP)
 - ACP (Acyl-carrier protein) carries acyl groups and contains phosphopantetheine
 - > Phosphopantetheine is a derivative of pantothenic acid (vitamin B5) with a terminal thiol group
- FAs synthesis steps:
 - > Acetyl CoA is added to the ACP domain
 - > Acetyl is transferred into the *Cys* residue
 - > *Malonyl CoA* is added to the *ACP* domain
 - Condensation reaction producing 4-carbon molecule on the ACP and decarboxylation of carboxyl group in malonyl CoA, released as CO₂
 - *Reduction* (requires NADPH) which converts the carbonyl group into hydroxyl
 - > *Dehydration* which involves the removal of H₂O
 - > *Reduction* (requires NADPH) removes double bond
 - Addition of more malonyl CoA, and repeating the same steps for each *malonyl CoA* added increasing the length of the FA by 2 carbons each turn

- > Palmitoyl thioesterase domain of the FAS cleaves (releases) the palmitate from the ACP domain
- Synthesis of FAs in the *liver* and *adipose* tissue terminates by reaching 16 C molecule called palmitate
 In the lactating *mammary* gland, the reaction terminates early producing SCFAs and MCFAs
- The source of substances used in FA synthesis:
 - > Acetyl CoA: from pyruvate oxidation
 - > *NADPH*: from *PPP* and conversion of *malate into pyruvate*
 - > *NADH* (important for the conversion of OAA into malate then into pyruvate): from *glycolysis*
 - > Malonyl CoA: Carboxylation of acetyl CoA by ACC

- Carboxylation of acetyl CoA produces Malonyl CoA, where CO_2 is brought as a <u>bicarbonate (HCO_3</u>)
 - > This enzyme is catalyzed by *acetyl CoA carboxylase (ACC)*, and it is ATP dependent
 - > It requires *vitamin B7* as a coenzyme which is covalently bound to lysine in the ACC
 - > It is the *rate limiting step* of FA synthesis
- ACC expression (production) requires the presence of 2 transcription factors:
 - Carbohydrate response element– binding protein (*ChREBP*)
 - Sterol regulatory element–binding protein-1c (*SREBP-1c*)
- Short term regulation of ACC activity:
 - > Activated by *citrate*, *phosphatase* (dephosphorylation) and *insulin*
 - > Inhibited by *palmitoyl CoA*, *AMP*, *glucagon* and *epinephrine*
 - ✓ AMP, glucagon and epinephrin inhibit ACC by activating *AMPK* (phosphorylation) which phosphorylates ACC

AMPK: AMP-activated Protein Kinase

- Long term regulation of ACC activity:
 - > PKA & AMPK phosphorylates ChREBP preventing its entry to the nucleus (reduces ACC synthesis)
 - Insulin activates SREBP-1c (increases ACC synthesis)
- Metformin (Glucophage) is a drug given for <u>pre-diabetic patients</u> which:
 - > Lowers plasma TAGs by activating AMPK which inhibits ACC and FA synthase expression
 - > lowers blood glucose by increasing AMP-mediated glucose uptake in the muscles
- For the production of 1 palmitate (16:0), it requires:
 - 1 acetyl CoA, 7 Malonyl CoA, 14 NADPH, 14 H⁺
 - ➢ 8 Acetyl CoA, 7 CO2, 7 ATP, 14 NADPH, 14 H⁺
- Further elongation of FAs occurs in:
 - SER: where the 2-carbon donor is *malonyl CoA* and the source of electrons is *NADPH*
 - Mitochondria: the 2-carbon donor is *acetyl CoA*, and the source of electrons is *NADH* & *NADPH*
 - ✓ <u>Brain</u> has enzymes allowing it to produce VLCFA
- Chain desaturation is done by *fatty acyl CoA desaturases* which act on LCFAs in the SER
 - > The electron acceptor is O_2 and *Cyt b5* (which have FAD-linked reductase)
 - > Donor of electrons: *NADH*
- The <u>first double bond</u> is inserted between carbons 9 and 10, producing *oleic acid* (18:1), and small amounts of *palmitoleic acid* (16:1) by Δ^9 desaturase
- Humans have carbon Δ^9 , Δ^6 , Δ^5 and Δ^4 desaturases
- We cannot introduce double bonds from carbon 10 to the ω end of the chain, so they are essential
 - > The polyunsaturated ω -6 *linoleic acid* and ω -3 *linolenic acid* are essential

- Notes
 - SCFAs and MCFAs usually <u>do not require</u> a carrier in plasma, but LCFAs requires albumin
 - Glucose can be used to produce fats, but fats can't produce glucose
 - ACC2 Inhibitors can be used as <u>wight loss agents</u>
 - CoA also contains Vitamin B5

Glyceroneogenesis

- Glycerol production from *non-glucose precursors* such as lactate, alanine and aspartate
- It occurs in the adipose tissue and liver, and after synthesis glycerol leaves adipose to the liver
- It regulates FA levels in the blood
- Failure in regulating glyceroneogenesis may lead to *Type 2 diabetes*
- Steps:
 - Precursor is converted into pyruvate which is converted into OAA by pyruvate carboxylase (PC), which is converted into PEP (phosphoenolpyruvate) by PEP-CK-C (PEP carboxykinase C)
 - > PEP is converted into G3P then DHAP which is converted into glycerol 3-phosphate

TAGs synthesis

- Synthesis of TAGs in the liver and adipose tissue invloves:
 - ➤ Glycerol 3-phosphate synthesis, by 2 mechanisms:
 - ✓ *Conversion of DHAP* (from glycolysis) into glycerol 3-phosphate
 - Phosphorylation of glycerol into glycerol 3-phosphate by glycerol kinase
 - Liver can use both mechanisms; adipose tissue can only use the first one
 - Glucose enters the adipose tissue by GLUT4 transporter
 - > Activation of fatty acids by adding CoA, by:
 - ✓ Adding AMP from ATP into FA producing acyl-adenylate and PP_i by Thiokinase
 - ✓ AMP is replaced by CoA producing Acyl CoA
 - Synthesis of triacylglycerol
 - ✓ Acyltransferase adds a FA-CoA to glycerol 3-phosphate on C1
 - ✓ Acyltransferase adds a FA-CoA to lysophosphatidic acid on C2
 - ✓ Phosphatase removes phosphate group from phosphatidic acid
 - ✓ Acyltransferase adds a FA-CoA to diacylglycerol on C3 forming TAG
- TAGs in the adipose tissue are produced to be *stored* as lipid droplets
- TAGs in the liver are produced mainly to be *packaged in VLDL* and a small portion for storage

- In the intestines, TAGs are synthesized by *MAG pathway*, which involves:
 - Monoacylglycerol enters mucosal cells
 - > 2 FAs are activated into FA-CoA, to be added into the monoglyceride producing TAG
 - > TAGs are then packaged into *chylomicrons* into the lymph

Degradation of FAs and TAGs

- Lipids represent a *major storage site of energy* (long term storage), especially TAGs
 - > Lipids are hydrophobic (stored without water), producing 9 Kcal per gram
 - Carbohydrates are hydrophilic (which attracts water), producing 4 Kcal per gram
 Glucose is the major circulating fuel
- The release of FAs from TAGs:
 - > Adipose triglyceride lipase (ATGL) releases the 1st FA of TAG, producing diglyceride
 - ▶ *Hormone-sensitive lipase (HSL)* releases the 2nd FA producing monoglyceride
 - Monoacylglyceride lipase (MGL) releases the **3rd** FA producing glycerol
- In well-fed state, *insulin* inhibits <u>ATGL</u> synthesis and activates phosphatase which inhibits <u>HSL</u>
 - > *Perilipin* protein that coats fat droplets, act as an emulsifier and blocks HSL
- In fasting state, *Glucagon* and *epinephrine* increases cAMP which activates PKA that phosphorylates perilipin releasing (disassembles) it and activating HSL
 - > *Phosphodiesterase inhibitors* activate the HSL

β-Oxidation of FAs

- It is the process of cleaving FAs on the β -C, producing 2-C fragments (Acetyl CoA)
 - > It occurs in the mitochondrial matrix
- SCFAs and MCFAs can enter the mitochondrial matrix easily
- LCFAs are shuttled from the cytosol into the mitochondrial matrix by the *carnitine shuttle mechanism*
- Carnitine shuttle mechanism
 - > FAs are **activated** by attaching CoA via *Acyl CoA synthetase* (*outer* membrane), requiring *ATP*
 - > Fatty acyl CoA passes through the outer mitochondrial membrane
 - CPT I (carnitine palmitoyl transferase I) in the *outer* membrane converts Fatty acyl CoA & carnitine into fatty *acyl-carnitine* and *CoA* and it is inhibited by *malonyl CoA*
 - > Fatty acyl carnitine is passed through the inner membrane by a translocase into the matrix
 - > CPT II (inner membrane) reform fatty acyl-CoA, and a translocase passes carnitine out

- Carnitine is originally synthesized from 2 amino acids L-methionine and L-lysine
 - > The cardiac and skeletal **muscles** contain 97% of carnitine in the body
 - Muscles don't have ACC1 (no FA synthesis) but have mitochondrial ACC2 (regulate degradation)
- Sources of carnitine are meat and synthesis in the kidney and liver
- Carnitine deficiencies:
 - > Primary carnitine deficiency
 - ✓ *Defects in membrane transporter:* No uptake of carnitine by muscles and the kidneys (excreted)
 - Treated by carnitine supplementation
 - Secondary carnitine deficiency
 - ✓ Taking *valproic acid (antiseizure)*, decreases renal reabsorption
 - ✓ *Liver diseases* cause decreased carnitine synthesis
 - ✓ *Defective fatty acid oxidation*, causes acyl-carnitines accumulation and its excretion into <u>urine</u>
 - ✓ *CPT-I deficiency:* affects the *liver*, causing severe *hypoglycemia*, *coma*, and *death*
 - ✓ *CPT-II deficiency:* affects the *liver*, *cardiac muscle*, and *skeletal muscle*
 - Avoidance of fasting
 - o A diet with high carbohydrates, low fat and supplemented with medium-chain TAG
- β-oxidation of FAs:
 - > Oxidation: fatty acyl CoA is oxidized by Acyl CoA dehydrogenase which reduces FAD into FADH₂
 - ✓ This enzyme has 4 isozymes SCAD, MCAD, LCAD, VLCAD
 - > *Hydration:* addition of water by hydratase
 - > Oxidation: by hydroxyacyl-CoA dehydrogenase, reducing NAD⁺ into NADH
 - > Thiolytic cleavage: by thiolase via breaking the bond between alpha and beta carbon
 - ✓ Inhibited by *Acetyl CoA*
- The number of cycles of β -oxidation and FA synthesis = (n/2) 1
- Number of acetyl CoA produced during β -oxidation = n/2
 - > NADH = 2.5 ATP, FADH2 = 1.5 ATP, Acetyl CoA = 12 ATP
 - > Net ATP yield of oxidation of FA = the net ATP yield of oxidation of fatty acyl CoA -2
 - > Not all acetyl CoA are used to produce ATP, some are used in gluconeogenesis and ketogenesis
- Medium chain fatty-acyl CoA dehydrogenase (MCAD) deficiency is an autosomal-recessive disorder
 - Solution Most common inborn error of β -oxidation (1:14,000 births worldwide)
 - > Higher incidence among <u>Caucasians</u> of Northern European descent
 - > Decreased ability to oxidize MCFAs (lack of energy) and severe hypoglycemia and hypoketonemia
 - Treatment: *avoidance of fasting* by regular and frequent meals and snacks and diet high in carbohydrates and low in fat

Oxidation of ODD FA

- Odd FAs undergo β-oxidation until reaching the last 3-C fragment which is called propionyl CoA
 - Propionyl CoA is carboxylated by *propionyl CoA carboxylase* which requires ATP and CO₂ in the form of HCO₃⁻ and carried by biotin (*Vit. B7*) forming *D-methylmalonyl CoA*
 - > D-methylmalonyl CoA is converted into *L-methylmalonyl* CoA by *epimerase*
 - L-methylmalonyl CoA is converted into *Succinyl CoA* by *methylmalonyl CoA mutase* which requires *vitamin B12* as a coenzyme
 - ✓ Deficiency in this enzyme or vitamin B12 causes <u>neurological manifestations</u> (developmental delay, seizures or intellectual disabilities) and <u>metabolic acidosis</u>
 - ✓ Succinyl CoA enters the TCA cycle

Oxidation of unsaturated FA

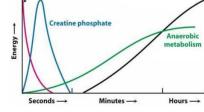
- Monounsaturated FAs are isomerized where the double bond is transferred between α and β carbons
 - It is done by *isomerase* and it causes the skip of the first step of β-oxidation leading to the loss of electrons (*loss of FADH*₂)
- Oxidation of **polyunsaturated** FAs such as linoleic acid (18:2) requires an NADPH dependent 2,4-dienoyl CoA reductase in addition to the *isomerase*
 - > It causes the loss of electrons (*loss of FADH2, NADPH*)

Peroxisomal β-oxidation

- Oxidation of *VLCFAs into LCFAs* then return to the mitochondrial β -oxidation
 - > It is very similar to the mitochondrial β-oxidation, but it uses *acyl CoA oxidase* instead of dehydrogenase in the first step
 - ✓ FADH₂ is oxidized forming hydrogen peroxide (H_2O_2) causing the loss of electrons
- Zellweger syndrome (peroxisomal biogenesis disorder) and X-linked adrenoleukodystrophy (dysfunctional transport VLCFA) causes VLCFAs accumulation

Peroxisomal α-oxidation

- Occurs in the *phytanic acid metabolism*
 - > Phytanic acid is a branched fatty acid produced from the breakdown of *chlorophyll*
 - > Cleaves the bond between the 1^{st} and α carbons producing CO_2
- Steps:
 - > Phytanic acid is <u>activated</u> by CoA (requires *ATP*) then it is transported into the peroxisomes
 - > It is hydroxylated by phytanoyl CoA α -hydroxylase (*PhyH*) which has Fe^{+2} as a prosthetic group


- 2-hydroxy phytanoyl-CoA lyase releases formyl-CoA which is then converted into formic acid and then CO₂ is released
- When fully degraded, it generates 4 byproducts: acetyl-CoA, 2-methyl-propionyl-CoA, formyl-CoA, propionyl-CoA
- *Refsum disease* is an autosomal-recessive disorder caused by a deficiency of peroxisomal PhyH

SER ω-oxidation

- ω -Oxidation is a minor pathway of the SER where FAs is converted into *dicarboxylic* acids by forming carboxyl group on the ω carbon
- It is upregulated in certain conditions such as MCAD deficiency

Sources of energy

- Sources of energy during an exercise:
 - > For the first 5 seconds, our reservoir of ATP is consumed
 - For the first 30 seconds, creatinine phosphate is used to replenish ATP reservoir by creatinine kinase

- > Aerobic and anaerobic metabolism starts:
 - ✓ Anaerobic can't continue for a long time because of the accumulation of lactic acid
 - ✓ Aerobic metabolism works after a while and persist for long periods
- For *short distance runners*, they rely on *ATP* and *creatinine phosphate*
- For *marathon runners*, they mostly rely on *aerobic metabolism* so must attain adequate oxygen

VARIABLE	SYNTHESIS	DEGRADATION
Greatest flux through pathway	After carbohydrate-rich meal	In starvation
Hormonal state favoring pathway	High insulin/glucagon ratio	Low insulin/glucagon ratio
Major tissue site	Primarily liver	Muscle, liver
Subcellular location	Cytosol	Primarily mitochondria
Carriers of acyl/acetyl groups between mitochondria and cytosol	Citrate (mitochondria to cytosol)	Carnitine (cytosol to mitochondria)
Phosphopantetheine-containing active carriers	Acyl carrier protein domain, coenzyme A	Coenzyme A
Oxidation/reduction coenzymes	NADPH (reduction)	NAD ⁺ , FAD (oxidation)
Two-carbon donor/product	Malonyl CoA: donor of one acetyl group	Acetyl CoA: product of β-oxidation
Activator	Citrate	-
Inhibitor	Palmitoyl CoA (inhibits acetyl CoA carboxylase)	Malonyl CoA (inhibits carnitine palmitoyltransferase-I)
Product of pathway	Palmitate	Acetyl CoA
Repetitive four-step process	Condensation, reduction dehydration, reduction	Dehydrogenation, hydration dehydrogenation, thiolysis

	carbohydrates	lipids
Stored as?	Starch - plants Glycogen - animals	Fats & oils (plants Fat (animals)
Long/short term storage?	Starch: long-term Gylcogen: short-term	Long term
Ease of digestion/ release of energy?	Easy to release energy	Harder to release energy (needs more oxygen)
Energy per gram?	17kJ/g	38kJ/g
Solubility in water? (and consequence)	Soluble	Not soluble
Use of oxygen in metabolism? (and consequence)	Needs less oxygen, useful for high-demand activity	Needs more oxygen, less efficient to release energy

f Arkan academy

Arkanacademy

🛞 www.arkan-academy.com

962 790408805